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This chapter introduces the Lebesgue integral, which is an integral with respect to a measure.
In particular, expected values of random variables are defined in the Lebesgue sense. We first
highlight the 3-step constructions of Lebesgue integrals for integrable functions. We then
discuss different modes of convergence of random variables – almost sure convergence, Lp

convergence, and convergence in probability. We then introduce the fundamental convergence
theorems of integrals, monotone convergence and dominated convergence.

Key topics in this chapter:
1. Expected values as Lebesgue integrals;

2. Constructions of Lebesgue integrals;

3. Convergence of random variables;

4. Convergence of integrals.

1 Lebesgue and Riemann Integrals
Let (Ω,F , µ) be a measure space, and µ be a σ-finite measure1. Let f : (Ω,F) → (R,B(R))
be a measurable function. We want to construct the Lebesgue integral of f with respect
to µ, denoted by

µ(f) =

∫
Ω

f(x) dµ(x).

In particular, if µ = P is a probability measure, and X : (Ω,F) → (R,B(R)) is a random
variable, the Lebesgue integral of X with respect to P is called the expected value of X,
denoted by

E[X] :=

∫
Ω

X(ω) dP(ω).

1Recall that a measure is σ-finite if there exists a collection {An}∞n=1 ⊆ F with ∪∞
n=1An = Ω, and

µ(An) < ∞ for each n ∈ N. In particular, a finite measure (e.g., probability measure) is also σ-finite.
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When Ω = [a, b] for some a < b, F = B([a, b]), and µ = λ, the Lebesgue measure, we also
write the Lebesgue integral of a function f with respect to λ as∫ b

a

f(x) dλ(x) =

∫ b

a

f(x) dx.

In elementary calculus courses, the expression
∫ b

a
f(x) dx often refers to the Riemann integral,

which is defined as follows:

Definition 1.1 (Riemann Integral) Let f : [a, b] → R be a bounded function. A
partition P = {x0, x1, . . . , xn} of [a, b] satisfies a = x0 < x1 < · · · < xn = b. Define

∆xi = xi − xi−1, mi = inf
x∈[xi−1,xi]

f(x), Mi = sup
x∈[xi−1,xi]

f(x).

Then the lower and upper Riemann sums are given by

L(f, P ) :=
n∑

i=1

mi∆xi, U(f, P ) :=
n∑

i=1

Mi∆xi.

We say f is Riemann integrable on [a, b] if

−∞ < sup
P

L(f, P ) = inf
P

U(f, P ) < ∞,

and in that case, we define∫ b

a

f(x) dx := sup
P

L(f, P ) = inf
P

U(f, P ).

The Lebesgue integral is a more general integration theory that applies to a broader class
of functions and measures. In particular, every Riemann integrable function is Lebesgue
integrable, and the two integrals agree when both are defined. However, the converse is not
true. We present a famous example of function that is not Riemann integrable on [0, 1], but
we will show in the sequel that it is Lebesgue integrable.

Example 1.1 Define f : [0, 1] → R by f(x) = 1Q(x). For any partition P =
{x0, x1, . . . , xn}, using the density of rational numbers, we must have mi = 0 and Mi = 1
for any i = 1, . . . , n. Hence,

0 = sup
P

L(f, P ) < inf
P

U(f, P ) = 1.

Hence, f is not Riemann integrable. This is because f has infinitely (despite countably)
many discontinuities.
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2 Construction of Lebesgue Integrals
We construct a Lebesgue integral of f using the following 3-step procedure:

1. f is a simple function;

2. f is a non-negative function;

3. f is a general measurable function.

The idea behind this procedure is to begin by defining the Lebesgue integral for the simplest
class of functions. We then approximate more general functions using these simpler ones, and
define the integral of the general function as the limit of the integrals of its approximations. A
similar strategy will be used later in this course when we construct stochastic integrals.

2.1 Simple Functions

Recall that a measurable function f : (Ω,F) → (R,B(R)) is called simple if it can be written
as

f(x) =
n∑

i=1

ai1Ai
(x), (1)

where a1, . . . , an ∈ R, A1, . . . , An ∈ F , and Ai ∩ Aj = ∅.

The Lebesgue integral for a simple function is defined as follows.

Definition 2.1 Let f : (Ω,F) → (R,B(R)) be a simple function taking the form (1).
Then, the Lebesgue integral of f with respect to µ is defined as∫

Ω

f(x)dµ(x) :=
n∑

i=1

aiµ(Ai).

Below are some properties of Lebesgue integrals for simple functions. We use the short-
hand notation

∫
f dµ to denote

∫
Ω
f(x)dµ(x).

Proposition 2.1 Let f and g be two simple functions. The following properties hold:
1. for any a, b ∈ R,

∫
(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ;

2. if f ≥ g µ-a.e., then
∫
fdµ ≥

∫
gdµ;

3. if f = g µ-a.e., then
∫
fdµ =

∫
gdµ;

4. |
∫
fdµ| ≤

∫
|f |dµ.

Proof. 1. By definition, it is clear that
∫
af dµ = a

∫
f dµ and

∫
bg dµ = b

∫
g dµ. Hence,
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it suffices to show that
∫
(f + g)dµ =

∫
fdµ+

∫
gdµ. Let

f(x) =
n∑

i=1

ai1Ai
(x) and g(x) =

m∑
j=1

bj1Bj
(x).

Let ao = b0 = 0, A0 := ∪m
j=1Bj \ ∪n

i=1Ai and B0 := ∪n
i=1Ai \ ∪m

j=1Bj. Then,

f(x) + g(x) =
n∑

i=0

m∑
j=0

(ai + bj)1Ai∩Bj
(x).

Note that Ai ∩ Bj are pairwise disjoint, ∪n
i=0Ai = ∪m

j=0Bj = (∪n
i=1Ai) ∪ (∪m

j=1Bj),
∪m

j=0(Ai ∩Bj) = Ai, and ∪m
i=0(Ai ∩Bj) = Bj. Hence,∫

Ω

(f(x) + g(x))dµ(x) =
n∑

i=0

m∑
j=0

(ai + bj)µ(Ai ∩Bj)

=
n∑

i=0

ai

m∑
j=0

µ(Ai ∩Bj) +
m∑
j=0

bj

n∑
i=0

µ(Ai ∩Bj)

=
n∑

i=0

aiµ(Ai) +
m∑
j=0

bjµ(Bj)

=
n∑

i=1

aiµ(Ai) +
m∑
j=1

bjµ(Bj)

=

∫
Ω

f(x)dµ(x) +

∫
Ω

g(x)dµ(x).

2. By the definition of Lebesgue integral, it is clear that
∫
φdµ ≥ 0 if φ ≥ 0 µ-a.e. Using

this and the first property,
∫
f dµ =

∫
(f − g)dµ+

∫
g dµ ≥

∫
g dµ, since f − g = φ ≥ 0

µ-a.e.

3. f = g µ-a.e. means f ≥ g µ-a.e. and g ≥ f µ-a.e. Using the second property, we have∫
f dµ ≥

∫
g dµ and

∫
f dµ ≤

∫
g dµ, which implies

∫
f dµ =

∫
g dµ.

4. Note that −|f | ≤ f ≤ |f | µ-a.e. Using the second property, we have −
∫
|f |dµ ≤∫

f dµ ≤
∫
|f |dµ, which implies |

∫
f dµ| ≤

∫
|f |dµ.

2.2 Non-negative Functions

Next, we construct the Lebesgue integral for non-negative measurable functions f , i.e., f ≥ 0
µ-a.e.
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We first show that any non-negative function f can be approximated by a sequence of
simple functions fn such that fn ≤ fn+1 and fn → f µ-a.e. (see Section 4 for the definition
of almost-everywhere convergence). To see this, for any n ∈ N and k ≤ n2n, we define the
(measurable) set

An,k :=

{
k − 1

2n
≤ f(x) <

k

2n

}
, An,n2n+1 := {f(x) ≥ n}.

Then, we define fn by

fn(x) :=
n2n∑
k=1

k − 1

2n
1An,k

(x) + n1An,n2n+1
(x). (2)

By constructions, each fn is a positive simple function and fn ≤ fn+1. This approximation
scheme is also called a dyadic approximation.

Since each fn is a simple function, we can define
∫
fn dµ. By Property 2 of Proposition

2.1, we have

0 ≤
∫
Ω

fn(x) dµ(x) ≤
∫
Ω

fn+1(x) dµ(x).

By the monotone convergence theorem of non-negative sequence, we have

lim
n→∞

∫
Ω

fn(x) dµ(x) = sup
n∈N

∫
Ω

fn(x) dµ(x) ∈ [0,∞].

We define the Lebesgue integral of f as this limit:

Definition 2.2 Let f be a non-negative measurable function, and let {fn}∞n=1 be a
sequence of dyadic simple functions approximating f from below, as defined in (2). Then,
we define the Lebesgue integral of f by∫

Ω

f(x) dµ(x) := lim
n→∞

∫
Ω

fn(x) dµ(x).

The properties stated in Proposition 2.1 also hold for the Lebesgue integrals of general
non-negative measurable functions f and g. This follows from approximating f and g by
sequences of simple functions {fn} and {gn}, respectively, each satisfying these properties.
By passing to the limit (using monotone convergence), the functions f and g inherit the
same integral properties.

Proposition 2.2 The properties about the integrals
∫
f dµ and

∫
g dµ in Proposition

2.1 still hold if f, g are non-negative measurable functions.
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2.3 General Functions

Finally, we construct the Lebesgue integral for a general measurable function which is neither
positive nor simple.

To this end, define

f+(x) := max{f(x), 0} and f− := max{−f(x), 0},
which are the positive and negative part of f , respectively. Note that f+, f− ≥ 0, and
f = f+ − f−. From the last subsection, we have constructed Lebesgue integrals for positive
functions, so that

∫
f+ dµ and

∫
f− dµ are well-defined. These observations motivate us to

define
∫
f dµ as follows

Definition 2.3 The Lebesgue integral of a measurable function f is defined as∫
Ω

f(x) dµ(x) :=

∫
Ω

f+(x) dµ(x)−
∫
Ω

f−(x) dµ(x).

Again, the Lebesgue integrals for general measurable functions also satisfy the properties
in Proposition 2.1.

Proposition 2.3 The properties about the integrals
∫
f dµ and

∫
g dµ in Proposition

2.1 still hold if f, g are general measurable functions.

2.4 Riemann Integrals vs Lebesgue Integrals

We have seen from Example 1.1 that, even the space Ω = [0, 1] is compact, a bounded
measurable function may not be Riemann integrable. In contrast, a bounded measurable
function is always Lebesgue integrable. We first look at the Lebesgue integral of f = 1Q in
Example 1.1.

Example 2.1 Continuing from Example 1.1 with (Ω,F) = ([0, 1],B([0, 1])), and f(x) :=

1Q(x). Calculate the Lebesgue integral
∫ 1

0
f(x)dx.

Solution. Note that f is a simple function. By definition,∫ 1

0

f(x) dx =

∫ 1

0

1Q(x) dx = λ(Q ∩ [0, 1]),

where λ(Q) is the Lebesgue measure of the rational number set in [0, 1]. Since Q is
countable, using the countable additivity of measures, we have

λ(Q ∩ [0, 1]) =
∑

q∈Q∩[0,1]

λ({q}) =
∑

q∈Q∩[0,1]

0 = 0,
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since the Lebesgue measure of a point is zero; recall Example 2.1 in Chapter 1. Hence,∫ 1

0
f(x) dx = 0. Indeed, f = 0 λ-a.e.

The following result relates Riemann and Lebesgue integrability. In particular, if a func-
tion f : [a, b] → R is Riemann integrable, it must be Lebesgue integrable, and the two notions
agree. Hence, we can use the usual integration rule to compute a Lebesgue integral.

Theorem 2.4 Let f : [a, b] → R be a bounded function.
1. The Riemann integral

∫ b

a
f(x) dx exists if and only if the set of discontinuities of f

has Lebesgue measure zero, i.e., f is continuous almost everywhere.
2. If the Riemann integral

∫ b

a
f(x) dx exists, then f is Borel measurable, the Lebesgue

integral
∫
[a,b]

f(x) dx is defined, and both integrals are equal.

3 Expected Values and Properties
Let (Ω,F ,P) be a probability space and X : (Ω,F) → (R,B(R)) be a random variable.
Recall that the Lebesgue integral of X with respect to P is simply the expected value of X,
defined by

E[X] :=

∫
Ω

X(ω)dP(ω).

In this section, we focus on properties of E[X]. Most of the properties introduced in this
section also holds for Lebesgue integrals with respect to a σ-finite measure.

3.1 Lp Space

Definition 3.1
1. A random variable X is said to be integrable if E[|X|] < ∞. We write L1(Ω,F ,P)

(or simply L1) to denote the set of all integrable random variables.
2. For 1 ≤ p < ∞, a random variable is said to be Lp-integrable if |X|p ∈ L1.
3. For p = ∞, we say that X ∈ L∞ if there exists M > 0 such that |X| ≤ M a.s.

Remark 3.1. For p ∈ [1,∞),

1. Lp is a vector space. In particular, if X, Y ∈ Lp, then X + Y ∈ Lp.

2. Lp is a normed space equipped with the p-norm, defined by

∥X∥p := (E[|X|p])
1
p .

If p = ∞, L∞ is a normed space equipped with the ∞-norm

∥X∥∞ := ess sup
ω∈Ω

|X(ω)| := inf{M ≥ 0 : |X| ≤ M a.s.}.
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3.2 Some Important Inequalities

We introduce three fundamental inequalities regarding expected values.

Theorem 3.2 (Chebyshev’s inequality) Let X ∈ Lp. Then, for any a > 0,

P(|X| ≥ a) ≤
E[|X|p1{|X|≥a}]

ap
≤ E[|X|p]

ap
.

Proof. Since |X|p ≥ |X|p1{|X|≥a} ≥ ap1{|X|≥a}. By taking expectations on all sides,

apP(|X| ≥ a) ≤ E[|X|p1{|X|≥a}] ≤ E[|X|p].

The result follows by dividing all sides by ap.

For the next two inequalities, the proofs are provided in the Appendix A.

Theorem 3.3 (Hölder’s inequality) Let p, q ∈ [1,∞] such that 1/p + 1/q = 1. Let
X ∈ Lp and Y ∈ Lq. Then,

E[|XY |] ≤ ∥X∥p∥Y ∥q.

In particular, Hölder’s inequality is reduced to the Cauchy–Schwarz inequality if p =
q = 2.

Theorem 3.4 (Jensen’s inequality) Let φ : R → R be a convex function, i.e., for any
λ ∈ [0, 1] and x, y ∈ R,

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y).

Then, for any random variable X such that X ∈ L1 and φ(X) ∈ L1,

φ(E[X]) ≤ E[φ(X)].

Remark 3.5.

1. Chebyshev’s inequality holds for a general σ-finite measure.

2. Hölder’s inequality holds for a general σ-finite measure for p, q ∈ (1,∞).

3. If µ is a finite measure, we have the following generalization of Jensen’s inequality:

φ

(
1

µ(Ω)

∫
Ω

f(x) dµ(x)

)
≤ 1

µ(Ω)

∫
Ω

φ ◦ f(x) dµ(x).

When µ(Ω) = 1, i.e., µ is a probability measure, we obtain the version as in Theorem
3.4.
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Using Jensen’s inequality, we can show the nested structure of Lp spaces under finite
measures.

Theorem 3.6 Let p > q ≥ 1. Then, Lp ⊆ Lq, i.e., any Lp-integrable random variables
must be Lq-integrable if q ≤ p.

Proof. If p = ∞, then there exists M > 0 such that |X| ≤ M a.s. This implies that
E[|Xq|] ≤ E[M q] = M q < ∞, whence X ∈ Lq.

If p < ∞, let φ(x) := xp/q, which is a convex function since p > q. Let Y = |X|q, so that
|X|p = Y p/q = φ(Y ). Using the fact that X ∈ Lp,

∞ > E[|X|p] = E[φ(Y )] ≥ φ(E[Y ]) = φ(E[|X|q]) = (E[|X|q])
p
q ,

which implies E[|X|q] < ∞.

4 Convergence of Random Variables
In Section 2.2, we introduced the dyadic approximation (2) which “converges" to f as n → ∞,
although the notion of convergence is not obvious in the case of measurable functions or
random variables. In this section, we introduce three modes of convergence and discuss their
relationship.

The first type of convergence is called almost-sure convergence, which is a type of pointwise
convergence except in measure zero sets.

Definition 4.1 (Almost-sure convergence) The sequence of random variables
{Xn}∞n=1 is said to converge almost-surely to X if

lim
n→∞

Xn(ω) = X(ω)

for almost all ω ∈ Ω, i.e., P(limn→∞ Xn ̸= X) = 0. In this case, we write Xn → X a.s.

The second type of convergence is defined in terms of the integrals of the deviation
|Xn −X|p, p ≥ 1.

Definition 4.2 (Lp convergence) Given that {Xn}∞n=1 ⊆ Lp and X ∈ Lp, where
1 ≤ p < ∞. The sequence {Xn}∞n=1 is said to be convergent in Lp to X if

lim
n→∞

E[|Xn −X|p] = 0.

In this case, we write Xn
Lp

→ X.
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Remark 4.1. Let p ≥ q ≥ 1, {Xn}∞n=1 ⊆ Lp and Xn
Lp

→ X ∈ Lp. Then, Xn
Lq

→ X. Indeed, by
Theorem 3.6, we have {Xn}∞n=1 ⊆ Lq and X ∈ Lq. By Jensen’s inequality, as n → ∞,

(E[|Xn −X|q])
p
q ≤ (E[|Xn −X|p]) → 0

Note that almost-sure convergence and Lp convergence do not imply each other, as seen
in the following examples:

Example 4.1 Let (Ω,F ,P) = ([0, 1],B(R), λ), where λ means the Lebesgue measures.
Define

Xn(ω) := n2
1( 1

n+1
, 1
n ]
(ω), ω ∈ [0, 1].

1. Show that Xn converges almost-surely and find the limit X
2. Does Xn converge to X in Lp, where p ≥ 1?

Solution.
1. Since for each ω ∈ (0, 1], there exists n large enough such that ω ∈ (1/n, 1/(n+1)].

Hence, for any ω ∈ (0, 1]. Xn(ω) = 0 when n is sufficiently large. This implies
Xn → 0 a.s.

2. We show that Xn does not converge to X = 0 in L1, which also implies Xn is not
convergent to 0 in Lp, p ≥ 1. Indeed,

E[|Xn|] = n2λ

((
1

n+ 1
,
1

n

])
= n2

(
1

n
− 1

n+ 1

)
=

n

n+ 1
→ 1 ̸= 0.

Example 4.2 Let (Ω,F ,P) = ([0, 1],B(R), λ). Define

Xn(ω) :=

1, if ω ∈
[
k

2m
,
k + 1

2m

]
;

0, otherwise,

where m = ⌊log2 n⌋ and k = n− 2m.
1. Show that Xn

L2

→ X and find the limit X.
2. Does Xn converge to X a.s.?

Solution.
1. For any n ≥ 1,

E[|Xn|2] = 12λ

([
k

2m
,
k + 1

2m

])
=

1

2m
→ 0

as n → ∞. Hence, Xn
L2

→ 0.
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2. Fix m ∈ N. For n ∈ {2m, 2m+1, . . . , 2m+1−1}, the sequence Xn corresponds to the
2m dyadic intervals of length 2−m given by [k/2m, (k+1)/2m], k = 0, 1, . . . , 2m− 1,
which partition the entire interval Ω = [0, 1]. When n = 2m+1, the cycle repeats
with 2m+1 intervals of length 2−(m+1) covering [0, 1].
Therefore, for every ω ∈ [0, 1], there exist infinitely many n such that Xn(ω) = 1,
and infinitely many n such that Xn(ω) = 0. Hence, the sequence {Xn(ω)} does
not converge for any ω ∈ [0, 1].

The following presents a way to prove L2-convergence of a sequence {Xn}∞n=1 to a number
µ ∈ R.

Proposition 4.2 Let {Xn}∞n=1 be a sequence of random variables with Xn ∈ L2 and
limn→∞ E[Xn] = µ. If limn→∞ Var[Xn] = 0, then Xn

L2

→ µ.

Proof. Note that

Var[Xn] = E[(Xn − E[Xn])
2]

= E
[(
(Xn − µ) + (µ− E[Xn])

2
)]

= E
[
(Xn − µ)2

]
+ 2(µ− E[Xn])(E[Xn − µ]) + (E[Xn]− µ)2

= E
[
(Xn − µ)2

]
− (E[Xn]− µ)2.

Hence,

0 = lim
n→∞

Var[Xn] = lim
n→∞

(
E
[
(Xn − µ)2

]
− (E[Xn]− µ)2

)
= lim

n→∞
E
[
(Xn − µ)2

]
.

Therefore, Xn
L2

→ µ.

Example 4.3 (Random walk) Let {ξn}∞n=1 be an i.i.d. sequence with P(ξn = 1) =
1/2 = P(ξn = −1). For n ≥ 1, let

Xn :=
1

n

n∑
k=1

ξk.

By the strong law of large numbers, Xn → E[ξ1] = 0 a.s. Show that Xn
L2

→ 0.

Solution. For n ≥ 1, it is easy to see that E[Xn] = E[ξ1] = 0. Hence, it suffices to show
that Var[Xn] → 0. By the i.i.d. property,

Var[Xn] =
1

n2

n∑
k=1

Var[ξk] =
nVar[ξ1]

n2
=

Var[ξ1]
n

=
1

n
→ 0
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as n → ∞. Therefore, Xn
L2

→ 0.

The last mode of convergence is the weakest among the three:

Definition 4.3 (Convergence in probability) The sequence of random variables
{Xn}∞n=1 is said to converge in probability to X if for any ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0.

In this case, we write Xn
P→ X.

The last result compares the three modes of convergence.

Theorem 4.3
1. Xn → X a.s. implies Xn

P→ X;
2. Xn

Lp

→ X implies Xn
P→ X;

3. Xn → X a.s. does NOT imply Xn
Lp

→ X, and Xn
Lp

→ X does NOT imply Xn → X.

The fact that Xn
Lp

→ X implies Xn
P→ X is a consequence of Chebyeshev’s inequality

(exercise). The proof of almost sure convergence implies convergent in probability requires
more analysis, readers are referred to Chapter 17 Probability Essentials by Jacod and Protter
for details.

5 Convergence Theorems of Integrals
In Example 4.1, we have seen that Xn → 0 a.s., but limn→∞ E[Xn] = 1 ̸= 0. In general,
Xn → X a.s. alone does not guarantee E[Xn] → E[X]. This section presents some important
convergence theorems that guarantee the convergence of expected values. Interested readers
can find the proofs of these theorems in Appendix B.

Theorem 5.1 (Monotone Convergence Theorem (MCT)) Let {Xn}∞n=1 be a se-
quence of random variables such that Xn ≥ 0, Xn ≤ Xn+1 a.s. for all n, and Xn → X
a.s. Then, limn→∞ E[Xn] = E[X].

Theorem 5.2 (Dominated Convergence Theorem (DCT)) Let {Xn}∞n=1 be a se-
quence of random variables such that Xn → X a.s., and suppose there exists Y ∈ L1

such that |Xn| ≤ |Y | a.s. for all n. Then, limn→∞ E[Xn] = E[X].
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Example 5.1 Let (Ω,F ,P) = ([0, 1],B([0, 1]), λ). For each n > 0, let Xn : (Ω,F) →
([0, 1],B([0, 1])) be a random variable defined by

Xn(x) =
sin(nex)

n
, x ∈ [0, 1].

Compute limn→∞ E[Xn].

Solution. Note that Xn → 0 a.s., and

|Xn(x)| =
∣∣∣∣sin(nex)n

∣∣∣∣ ≤ 1

n
≤ 1.

Hence, by DCT, we have limn→∞ E[Xn] = E[limn→∞Xn] = 0.

Example 5.2 Let {Xn}∞n=1 be a sequence of non-negative random variables. Show that

∞∑
n=1

E[Xn] = E

[
∞∑
n=1

Xn

]
.

Solution. Let Sn :=
∑n

i=1Xi, then Sn ≥ 0, Sn ≤ Sn+1 for any n ≥ 1, and Sn ↑ S∞ =∑∞
i=1Xi. By MCT, we have

∞∑
i=1

E[Xi] = lim
n→∞

n∑
i=1

E[Xi] = lim
n→∞

E[Sn] = E [S∞] = E

[
∞∑
i=1

Xi

]
.

Example 5.3 Recall from Example 4.1, we have Xn → 0 a.s., but E[Xn] → 1 ̸= 0.
Explain why both the monotone convergence and dominated convergence failed to apply.

Solution. MCT: the sequence Xn are non-negative, but not monotonic. Indeed, for any
ω ∈ (0, 1/2), there exists n > 1 such that Xn−1(ω) = 0, Xn(ω) = n2, and Xn(ω) = 0.
Therefore, the MCT does not apply.
DCT: DCT requires a single integrable function Y ∈ L1 such that |Xn| ≤ Y a.s. for all
n. Since

Xn(ω) = n2 for ω ∈
(

1

n+ 1
,
1

n

]
,

the domination condition |Xn(ω)| ≤ Y (ω) implies Y (ω) ≥ n2 for ω ∈ (1/(n + 1), 1/n].
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Therefore,

Y (ω) ≥
∞∑
n=1

n2
1( 1

n+1
, 1
n ]
(ω).

But the right-hand side defines a function whose integral is

E[Y ] =
∞∑
n=1

n2

(
1

n
− 1

n+ 1

)
=

∞∑
n=1

n2

n(n+ 1)
=

∞∑
n=1

n

n+ 1
= ∞.

Hence, no integrable dominating function Y exists, and the DCT cannot be applied.

6 Computations of Expected Values
This section provides some basic rules in computing expectations, most of which have been
covered in introductory probability courses.

Theorem 6.1 (Change of variables formula) Let X : (Ω,F) → (S,S) be a random
variable with distribution PX , and g : (S,S) → (R,B(R)) be a measurable function such
that E[|g(X)|] < ∞. Then,

E[g(X)] =

∫
S

g(x)dPX(x).

Proof. The formula is proven by the 3-step approach: from simple functions, non-negative
functions, to general measurable functions.

Suppose that

g(x) =
n∑

i=1

ai1Ai
(x),

where A1, . . . , An ∈ S, Ai ∩ Aj = ∅ for i ̸= j. Then,

E[g(X)] = E

[
n∑

i=1

ai1Ai
(X)

]
=

n∑
i=1

aiE[1Ai
(X)] =

∫
S

n∑
i=1

ai1Ai
(x)dPX(x) =

∫
S

g(x)dPX(x).

Next, suppose that g is non-negative. Let {gn}∞n=1 be the dyadic approximation of g; see
(2). Then, gn is simple, and gn ↑ g a.s. Using the MCT twice, we have

E[g(X)] = lim
n→∞

E[gn(X)] = lim
n→∞

∫
S

gn(x)dPX(x) =

∫
S

g(x)dPX(x).

Note that the MCT was used in the first and the last equality.
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Finally, for any measurable function g, we can write g = g+ − g−. Then,

E[f(X)] = E[g+(X)]− E[g−(X)]

=

∫
S

g+(x)dPX(x)−
∫
S

g−(x)dPX(x)

=

∫
S

[g+(x)− g−(x)]dPX(x) =

∫
S

g(x)dPX(x).

Based on the range of values X could take, the expected values can be computed as
follows:

1. X can only take countably many values S = {xn}∞n=1:
• X is said to be a discrete random variable.
• PX is characterized by the probability mass function (pmf), defined by

PX(x) = P(X = x), x ∈ S.

• E[g(X)] can be computed by

E[g(X)] =
∑
x∈S

g(x)PX(x).

2. X can take uncountably many values S, and PX is absolutely continuous with
respect to the Lebesgue measure:
• X is said to be a continuous random variable.
• The distribution PX is characterized by a probability density function (pdf)
fX , such that for any Borel set A ⊆ S,

P(X ∈ A) =

∫
A

fX(x) dx.

• If the distribution function FX(x) is differentiable at x, then fX(x) =
d
dx
FX(x).

• E[g(X)] can be computed by

E[g(X)] =

∫
S

g(x)fX(x) dx.

Example 6.1 Let X be a Cauchy random variable with the following density function:

fX(x) =
1

π

1

1 + x2
, x ∈ R.
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1. Show that
∫
R f(x)dx = 1.

2. Show that E[X+] = E[X−] = ∞, and so X ̸∈ L1.
3. Can we compute E[X]?

Solution.
1. By a direct integration,∫

R
f(x) dx =

1

π

∫
R

dx

1 + x2
=

1

π
tan−1(x)

∣∣∞
−∞ =

1

π

(
π

2
− −π

2

)
= 1.

2. For |x| ≥ 1, we have
|x|

1 + x2
≥ |x|

x2 + x2
=

1

2x
.

Hence,

E[X+] =

∫ ∞

0

xf(x) dx =

∫ ∞

0

x

1 + x2
dx ≥

∫ ∞

1

dx

2x
= ∞.

Likewise, we can show that E[X−] = ∞. This implies E[|X|] = E[X+] + E[X−] =
∞, and thus X ̸∈ L1.

3. Despite the integrand x/(1 + x2) is an odd function, E[X] ̸= 0, since both
E[X+],E[X−] are not finite. In this case, E[X] is not well-defined.

Example 6.2 The moment generating function of the random variable X is defined
as

MX(t) = E[etX ], t ∈ R,
provided that etX ∈ L1. Let X be a standard normal variable, X ∼ N (0, 1), which
admits the following probability density function

φ(x) =
1√
2π

e−
x2

2 , x ∈ R.

Compute MX(t).

Solution. Using the change of variables formula,

MX(t) = E[etX ] =
∫ ∞

−∞
etxφ(x) dx

=

∫ ∞

−∞
etx

(
1√
2π

e−
x2

2

)
dx

= e
t2

2

∫ ∞

−∞

1√
2π

e−
(x−t)2

2 dx = e
t2

2 .
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Appendices

A Proofs of Useful Inequalities

A.1 Proof of Hölder’s Inequality

The inequality clearly holds if p = 1, q = ∞ (or when q = 1, p = ∞), since

E[|XY |] ≤ ∥Y ∥∞E[|X|] = ∥X∥1∥Y ∥∞.

If ∥X∥p = 0 or ∥Y ∥q = 0, we must have |XY | = 0 a.s., and thus the inequality also holds.
Therefore, it suffices to consider p, q ∈ (1,∞), and ∥X∥p, ∥Y ∥q > 0.

Using Young’s inequality, for any x, y ≥ 0 and p, q ∈ (1,∞) such that 1/p+ 1/q = 1, we
have

xy ≤ xp

p
+

yq

q
.

Using this, and by taking

x =
|X|
∥X∥p

and y =
|Y |
∥Y ∥q

,

we have
|XY | ≤ ∥X∥p∥Y ∥q

(
|X|p

p∥X∥pp
+

|Y |q

q∥Y ∥qq

)
The desired inequality follows by taking expectations on both sides.

A.2 Proof of Jensen’s Inequality

Let µ := E[X]. By the convexity of φ, we can always find a ∈ R such that the linear function
l(x) := a(x− µ) + φ(µ) satisfies l(x) ≤ φ(x) for all x ∈ R. Using this fact, we have

E[φ(X)] ≥ E[l(X)] = aE[X − µ] + φ(µ) = φ(E[X]).

B Proof of MCT and DCT
We provide the proofs of the MCT and DCT. To this end, we introduce the following key
lemma:

Theorem B.1 (Fatou’s Lemma) Let {Xn}∞n=1 be a sequence of non-negative measur-
able functions. Then,

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].
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B.1 Proof of MCT

We prove the MCT using Fatou’s lemma. Since Xn ↑ X, we have lim infn→∞Xn = X a.s.
The monotonicity also implies E[Xn] ↑ E[X], whence lim infn→∞ E[Xn] = limn→∞ E[Xn].
Using the fact that Xn ≥ 0 a.s., we can apply Fatou’s lemma to conclude that

E[X] = E
[
lim
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn] = lim

n→∞
E[Xn].

This proves one side of the convergence theorem.

To complete the proof, we need to show that E[X] ≥ limn→∞ E[Xn]. To this end, consider
Yn := X−Xn. Then Yn ≥ 0 a.s. for all n ≥ 1, lim infn→∞ Yn = 0 a.s., and lim infn→∞ E[Yn] =
lim infn→∞(E[X]− E[Xn]) = E[X]− limn→∞ E[Xn]. By Fatou’s lemma,

0 = E
[
lim
n→∞

Yn

]
≤ lim inf

n→∞
E[Yn] = E[X]− lim

n→∞
E[Xn],

which proves the desired inequality.

B.2 Proof of DCT

Similar to the proof of MCT, we establish DCT using Fatou’s lemma. Since |Xn| ≤ Y and
Xn → X a.s., we also have |X| = lim |Xn| ≤ Y a.s. Hence, X ∈ L1 by comparison with
Y .

By applying Fatou’s lemma to the non-negative functions Xn + Y , we have

E[X + Y ] ≤ lim inf
n→∞

E[Xn + Y ] = lim inf
n→∞

(E[Xn] + E[Y ]),

so
E[X] ≤ lim inf

n→∞
E[Xn].

Next, apply Fatou’s Lemma to −Xn + Y , which are also non-negative:

E[−X + Y ] ≤ lim inf
n→∞

E[−Xn + Y ] = lim inf
n→∞

(−E[Xn] + E[Y ]),

which gives
−E[X] ≤ lim inf

n→∞
(−E[Xn]), or E[X] ≥ lim sup

n→∞
E[Xn].

Therefore,
lim sup
n→∞

E[Xn] ≤ E[X] ≤ lim inf
n→∞

E[Xn],

which implies
lim
n→∞

E[Xn] = E[X].
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